Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38596842

RESUMO

The interaction between bacteria and the host plays a vital role in the initiation and progression of systemic diseases, including gastrointestinal and oral diseases, due to the secretion of various virulence factors from these pathogens. GroEL, a potent virulence factor secreted by multiple oral pathogenic bacteria, is implicated in the damage of gingival epithelium, periodontal ligament, alveolar bone and other peripheral tissues. However, the underlying biomechanism is still largely unknown. In the present study, we verify that GroEL can trigger the activation of NLRP3 inflammasome and its downstream effector molecules, IL-1ß and IL-18, in human periodontal ligament stem cells (hPDLSCs) and resultantly induce high activation of gelatinases (MMP-2 and MMP-9) to promote the degradation of extracellular matrix (ECM). GroEL-mediated activation of the NLRP3 inflammasome requires the participation of Toll-like receptors (TLR2 and TLR4). High upregulation of TLR2 and TLR4 induces the enhancement of NF-κB (p-p65) signaling and promotes its nuclear accumulation, thus activating the NLRP3 inflammasome. These results are verified in a rat model with direct injection of GroEL. Collectively, this study provides insight into the role of virulence factors in bacteria-induced host immune response and may also provide a new clue for the prevention of periodontitis.

2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 136-141, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650143

RESUMO

This study aimed to explore the core genes of craniopharyngioma angiogenesis for targeted vascular therapy based on single-cell nuclear transcriptome sequencing. For single-cell nuclear transcriptome sequencing, we collected six samples from the tumor center and adjacent hypothalamic tumor tissues from three patients with craniopharyngioma, as well as four normal brain tissues based on Gene Expression Omnibus. We screened genes with differential up-regulation between vascular endothelial cells of craniopharyngioma and those of normal brain tissues, performed GO and KEGG analysis, constructed the protein-protein interaction network, and selected key genes verified using immunofluorescence. After data cleaning and quality control, 623 craniopharyngioma endothelial cells and 439 healthy brain endothelial cells were obtained. Compared with normal brain endothelial cells, craniopharyngioma endothelial cells were screened for 394 differentially up-expressed genes (DEGs). GO and KEGG results showed that DEGs probably modulated endothelial cells, adherens junction, focal adhesion, migration, actin cytoskeleton, and invasion via the PI3K-AKT, Rap1, Ras, Wnt, and Hippo pathways. The core genes screened were CTNNB1, PTK2, ITGB1, STAT3, FYN, HIF1A, VCL, SMAD3, PECAM1, FOS, and CDH5. This study obtained possible anti-angiogenic genes in craniopharyngioma. Our results shed novel insights into molecular mechanisms and craniopharyngioma treatment.

3.
Adv Sci (Weinh) ; : e2401996, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482957

RESUMO

Porous Ionic Liquids (PILs) have gained attention but facing challenges in catalysis, especially in liquid-liquid two-phase reactions due to limited catalytic sites and hydrophilicity control. This work engineered a Type III PILs (PILS-M) using zeolitic imidazolate framework-8 (ZIF-8) confined phosphomolybdic acid (HPMo) as the microporous framework and N-butyl pyridine bis(trifluoromethane sulfonyl) imide ionic liquid ([Bpy][NTf2 ]) as the solvent. The PILS-M not only combines the advantages of traditional ionic liquids and microporous frameworks, including excellent extraction, high dispersion of catalytically active species, remarkable stability, etc., but also can make the inner surface of ZIF-8 turned to be hydrophilic that favors the contact between aqueous hydrogen peroxide oxidant and catalytically active sites for the promotion of catalytic performance in reactive extractive desulfurization (REDS) processes of fuel oils. This study demonstrates Type III PILs' potential as catalysts for sustainable chemical processes, offering insights into versatile PILs applications in diverse fields.

4.
Int J Biol Macromol ; 266(Pt 1): 131175, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552696

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) significantly contributes to the high incidence of complications and mortality associated with acute myocardial infarction. Recently, injectable electroconductive hydrogels (IECHs) have emerged as promising tools for replicating the mechanical, electroconductive, and physiological characteristics of cardiac tissue. Herein, we aimed to develop a novel IECH by incorporating irbesartan as a drug delivery system (DDS) for cardiac repair. Our approach involved merging a conductive poly-thiophene derivative (PEDOT: PSS) with an injectable dual-network adhesive hydrogel (DNAH) comprising a catechol-branched polyacrylamide network and a chitosan-hyaluronic acid covalent network. The resulting P-DNAH hydrogel, benefitting from a high conducting polymer content, a chemically crosslinked network, a robust dissipative matrix, and dynamic oxidation of catechol to quinone exhibited superior mechanical strength, desirable conductivity, and robust wet-adhesiveness. In vitro experiments with the P-DNAH hydrogel carrying irbesartan (P-DNAH-I) demonstrated excellent biocompatibility by cck-8 kit on H9C2 cells and a rapid initial release of irbesartan. Upon injection into the infarcted hearts of MIRI mouse models, the P-DNAH-I hydrogel effectively inhibited the inflammatory response and reduced the infarct size. In conclusion, our results suggest that the P-DNAH hydrogel, possessing suitable mechanical properties and electroconductivity, serves as an ideal IECH for DDS, delivering irbesartan to promote heart repair.

5.
Front Surg ; 11: 1146957, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481609

RESUMO

Background: To evaluate the cumulative summation (CUSUM) analysis of the learning curve for Endoscopic Endonasal Transsphenoidal resection of craniopharyngioma (EETC). Methods: Retrospectively analyzed the clinical data of 113 patients who underwent EETC by the same neurosurgery team of the first affiliated Hospital of Nanchang University from June 2012 to November 2020. The learning curve was created by the CUSUM method and analyzed, which was divided into two groups: the learning stage and stable stage based on the learning curve trend. The median operation time and minimum surgical case number was calculated and the operation time and postoperative complications were compared between the two groups. Results: The median operation time was 318 min. The best fitting curve equation was y = 227.72 + 49.06x + 0.14x2 - 0.05x3, R2 = 0.949, (p < 0.001). The minimum number of surgical cases was 65. Between the two groups, the operation time decreased from 360.8 ± 106.4 min in the learning group to 281.6 ± 69.9 min in the stable group (p < 0.05). The incidence of postoperative complications (intracranial infection, cerebrospinal fluid rhinorrhea, and diabetes insipidus) was significantly reduced (p < 0.05). Conclusion: The CUSUM learning curve of craniopharyngioma resection via endoscope endonasal transsphenoidal approach could better describe the learning process for a neurosurgeon. The frequency of surgery could be a good factor for strengthening the learning effect and help to shorten the learning time. After 65 cases of EETC, the surgical skills can reach a stable stage, the operation time is obviously shortened, and the postoperative complications are significantly reduced.

6.
Nanoscale ; 16(8): 3994-4003, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38327210

RESUMO

Iron-chromium flow batteries (ICRFBs) are regarded as one of the most promising large-scale energy storage devices with broad application prospects in recent years. However, transitioning from laboratory-scale development to industrial-scale deployment can be a time-consuming process due to the multitude of complex factors that impact ICRFB stack performance. Herein, a data-driven optimization methodology applying active learning, informed by an extensive survey of the literature encompassing diverse experimental conditions, is proposed to enable exceptional precision in predicting ICRFB system performance considering both operation conditions and key materials selection. Specifically, multitask ML models are trained on experimental data with a high prediction accuracy (R2 > 0.92) to link ICRFB properties to energy efficiency, coulombic efficiency, and capacity. We also interpret the ML models based on Shapley additive explanations and extract valuable insights into the importance of descriptors. It is noted that the operation conditions (current density and cycle number) and the electrode type are the most critical descriptors affecting the voltage efficiency and coulombic efficiency while the electrode size strongly affects the capacity. Moreover, active learning is used to explore the most optimized cases considering the highest energy efficiency and capacity. The versatility and robustness of the approach are demonstrated by the successful validation between ML prediction and our experiments of energy efficiency (±0.15%) and capacity (±0.8%). This work not only affords fruitful data-driven insight into the property-performance relationship, but also unveils the explainability of critical properties on the performance of ICRFBs, which accelerates the rational design of next-generation ICRFBs.

7.
Plant Foods Hum Nutr ; 79(1): 189-193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38315314

RESUMO

Due to the limitations of the properties of chestnut flour, its applications have been restricted. The objective of this study is to investigate the impact of whey protein isolate (WPI) and xanthan gum (XG) on the functional and digestive properties of chestnut flour, specifically focusing on gel texture, solubility and swelling power, water absorption capacity, freeze-thaw stability and starch digestibility. The addition of both WPI and XG reduced the gel hardness, gumminess and chewiness of the co-gelatinized and physically mixed samples. Furthermore, the inclusion of physically mixed WPI and XG led to an increase in the solubility (from 58.2 to 75.0%) and water absorption capacity (from 3.11 to 5.45 g/g) of chestnut flour. The swelling power of the chestnut flour was inhibited by both additives. WPI was superior to XG at maintaining freeze-thaw stability, by reducing the syneresis from 71.9 to 68.1%. Additionally, WPI and XG contributed to the inhibition of starch hydrolysis in the early stage of digestion, resulting in a lower starch digestibility of chestnut flours. This research provides insights into the interaction mechanisms between WPI, XG, and chestnut flour, offering valuable information for the development of chestnut flour products with enhanced properties.


Assuntos
Farinha , Polissacarídeos Bacterianos , Amido , Proteínas do Soro do Leite , Água
8.
ACS Appl Mater Interfaces ; 16(3): 3451-3459, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194627

RESUMO

As the demand for ethylene grows continuously in industry, conversion of ethane to ethylene has become more and more important; however, it still faces fundamental challenges of low ethane conversion, low ethylene selectivity, overoxidation, and instability of catalysts. Electrooxidative dehydrogenation of ethane (EODHE) in a solid oxide electrolysis cell (SOEC) is an alternative process. Here, a multiphase oxide Ce0.6Mn0.3Fe0.1O2-δ-NiFe-MnOx has been fabricated by a self-assembly process and utilized as the SOEC anode material for EODHE. The highest ethane conversions reached 52.23% with 94.11% ethylene selectivity at the anode side and CO with 10.9 mL min-1 cm-2 at the cathode side, at 1.8 V at 700 °C. The remarkable electrooxidative performance of CMF-NiFe-MnOx is ascribed to the NiFe alloy and MnOx nanoparticles and improvement of the concentration of oxygen vacancies within the fluorite substrate, generating dual active sites for C2H6 adsorption, dehydrogenation, and selective transformation of hydrogen without overoxidizing the ethylene generated. Such a tailored strategy achieves no significant degradation observed after 120 h of operation and constitutes a promising basis for EODHE.

9.
Phys Chem Chem Phys ; 26(3): 2449-2456, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168706

RESUMO

The search for highly active and low-cost single-atom catalysts for the oxygen reduction reaction (ORR) is essential for the widespread application of proton exchange membrane fuel cells. Transition metals anchored on nitrogen-doped graphdiyne (GDY) have attracted considerable interest as potentially excellent catalysts for the ORR. However, the relationship between the active site and nitrogen-doped GDY remains unclear. In this work, we conducted a systematic investigation of sp-hybridized N atoms anchoring single transition metal atoms of 3d and 4d on GDY (TMC2N2) as electrocatalysts for the ORR. Firstly, 18 kinds of TMC2N2 were determined to have good thermodynamic stability. Due to the extremely strong adsorption of *OH, TMC2N2 exhibits inferior ORR performance compared to traditional Pt(111). Considering that *OH adsorption hinders the catalytic activity of TMC2N2, we modified the OH ligand of TMC2N2 to develop the high-valent metal complex (TMC2N2-OH) aiming to enhance the electrocatalytic activity. The adsorption of intermediates on most TMC2N2-OH is weakened after the modification of the OH ligand, especially for the adsorption of *OH. Thus, by comparing the ORR overpotential of catalysts before and after ligand modification, we find that the catalytic activity of different TMC2N2-OHs improves to various degrees. MnC2N2-OH, TMC2N2-OH, and TcC2N2-OH exhibit relatively high ORR catalytic activity, with overpotentials of 0.93 V, 1.19 V, and 0.92 V, respectively. Furthermore, we investigated the cause of improved catalytic activity of TMC2N2-OH and found that the modified coordination environment of the catalyst led to adjusted adsorption of ORR intermediates. In summary, our work sheds light on the relationship between nitrogen-doped GDY and transition metal sites, thus contributing to the development of more efficient catalysts.

10.
Int J Biol Macromol ; 254(Pt 1): 127704, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898245

RESUMO

Chestnuts are a starchy food with a characteristic glutinous taste that is often used to assess their quality. In this study, our findings indicated that chestnuts with higher glutinous taste quality had lower amylose content and microcrystalline structures, as well as higher subcrystalline structures and relative crystallinity in both the raw and steamed starches. In the leached starch, chestnuts with higher glutinous taste quality had lower amylopectin B1 chains and microcrystalline structure, but higher amylopectin B2 chains, subcrystalline structure and relative crystallinity. These results suggest that amylose content, relative crystallinity, and amylopectin chain length distribution are important factors determining the glutinous taste quality of chestnuts. To further enhance our understanding of these factors, an sensory evaluation model was developed based on textural profile analysis parameters. This study provides valuable insights into the relationship between molecular structure of starch and the glutinous taste quality of starchy foods.


Assuntos
Oryza , Amido , Amido/química , Amilopectina/química , Amilose/química , Estrutura Molecular , Paladar , Oryza/química
11.
Int Immunopharmacol ; 127: 111406, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38142643

RESUMO

Osteoarthritis (OA) causes severe and functional dysfunction due to abnormal inflammation. The objective of this study was to evaluate the effect of Harpagide (HPG) on TNF-α-induced inflammation in vitro and in vivo. The effect of HPG on the proliferation of rat chondrocytes was studied. The anti-inflammatory effect of HPG and its molecular mechanisms were elucidated by qPCR, Western blotting, flow cytometry, metabolome analysis in vitro. In addition, the OA rat model was established, and the effect of HPG on OA was verified in vivo. We revealed 10 µM HPG demonstrated biocompatibility. The results demonstrated that HPG restored the upregulation of MMP-13, COX2, IL-1ß and IL-6 induced by TNF-α. Moreover, HPG reversed TNF-α induced degradation of the extracellular matrix of chondrocytes. TNF-α treatment induced down-regulation of the mRNA/protein levels of proliferative markers Bcl2, CDK1 and Cyclin D1 were also recovered. HPG can inhibit TNF-α-induced inflammatory response through glycolytic metabolic pathways. HPG can restore TNF-α-induced upregulation of GRP78/IRE1α, and downregulation of AMPK proteins. In vivo experiments demonstrated that after HPG treatment, the appearance and physiological structure of articular cartilage were more integrated with highly organized chondrocytes and rich cartilage matrix compared with OA group. Finally, the molecular docking of HPG and selected key factors in glycolysis results showed that HPG had good binding potential with PFKM, PFKP, PFKFB3, PKM, HK2, and PFKL. In conclusion, the results shown HPG protects and activates chondrocytes, inhibits TNF-α-induced inflammatory response by glycolysis pathway in rat articular chondrocytes, and plays a role in the treatment of OA.


Assuntos
Cartilagem Articular , Glicosídeos Iridoides , Osteoartrite , Piranos , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Condrócitos , Simulação de Acoplamento Molecular , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Interleucina-1beta/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas
12.
Chem Rev ; 124(1): 27-123, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156796

RESUMO

Ionic liquids (ILs) offer a wide range of promising applications due to their unique and designable properties compared to conventional solvents. Further development and application of ILs require correlating/predicting their pressure-viscosity-temperature behavior. In this review, we firstly introduce methods for calculation of thermodynamic inputs of viscosity models. Next, we introduce theories, theoretical and semi-empirical models coupling various theories with EoSs or activity coefficient models, and empirical and phenomenological models for viscosity of pure ILs and IL-related mixtures. Our modelling description is followed immediately by model application and performance. Then, we propose simple predictive equations for viscosity of IL-related mixtures and systematically compare performances of the above-mentioned theories and models. In concluding remarks, we recommend robust predictive models for viscosity at atmospheric pressure as well as proper and consistent theories and models for P-η-T behavior. The work that still remains to be done to obtain the desired theories and models for viscosity of ILs and IL-related mixtures is also presented. The present review is structured from pure ILs to IL-related mixtures and aims to summarize and quantitatively discuss the recent advances in theoretical and empirical modelling of viscosity of ILs and IL-related mixtures.

13.
Plants (Basel) ; 12(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140455

RESUMO

Glycine soja is the wild relative species of cultivated soybean. In this study, we investigated the population divergence and genetic basis of the local adaptation of wild soybean in China using genome-wide single-nucleotide polymorphisms (SNPs) of a population of 72 G. soja accessions. Using phylogenetic analysis, we observed that G. soja accessions clustered into three distinct groups, each corresponding to a specific geographic region, the northeastern region (NER), central region (CR), and southern region (SR), consistent with previous studies. Notably, we found a significant positive correlation between genetic and geographic distances. Further population structure analysis revealed each group was associated with an ancestral population and a specific geographic area. By utilizing the genome sequencing data of accessions from 16 different locations, we inferred the population history of these wild soybean groups. Our results indicate that the three groups diverged ~25,000 years ago, coinciding with the time of the last glacial maximum. The effective population size of the SR group expanded first, and subsequently, the NER and CR groups expanded approximately 5000 and 2500 years ago, respectively. Moreover, 83, 104, and 101 significant associated loci (SALs) were identified using genome-wide association analysis for annual mean temperature, annual precipitation, and latitude, respectively. Functional analysis of genes located in SALs highlighted candidate genes related to local adaptation. This study highlights the significant role of geographic isolation and environmental factors in shaping the genetic structure and adaptability of wild soybean populations. Furthermore, it emphasizes the value of wild soybean as a crucial genetic resource for enhancing the adaptability of cultivated soybeans, which have experienced a loss of genetic diversity due to domestication and intensive breeding practices. The insights gained from our research provide valuable information for the protection, conservation, and utilization of this important genetic resource.

14.
Plants (Basel) ; 12(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687357

RESUMO

Allopolyploidy through the combination of divergent genomes into a common nucleus at doubled dosage is known as a potent genetic and evolutionary force. As a macromutation, a striking feature of allopolyploidy in comparison with other mutational processes is that 'genome shock' can be evoked, thereby generating rapid and saltational biological consequences. A major manifestation of genome shock is genome-wide gene expression rewiring, which previously remained to be fully elucidated. Here, using a large set of RNAseq-based transcriptomic data of a synthetic allotetraploid wheat (genome AADD) and its parental species, we performed in-depth analyses of changes in the genome-wide gene expression under diverse environmental conditions at the subgenome (homoeolog) level and investigated the additional effects of homoeologous chromosomal segment exchanges (abbreviated HEs). We show that allopolyploidy caused large-scale changes in gene expression that were variable across the conditions and exacerbated by both stresses and HEs. Moreover, although both subgenomes (A and D) showed clear commonality in the changes, they responded differentially under variable conditions. The subgenome- and condition-dependent differentially expressed genes were enriched for different gene ontology terms implicating different biological functions. Our results provide new insights into the direct impacts of allopolyploidy on condition-dependent changes in subgenome expression and the additional effects of HEs in nascent allopolyploidy.

15.
Anal Chem ; 95(41): 15342-15349, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37728182

RESUMO

Petroleum olefins play important roles in various secondary processing procedures and are important feedstocks for the modern organic chemical industry. It is quite challenging to analyze petroleum olefins beyond the gas chromatography (GC)-able range using mass spectrometry (MS) due to the difficulty of soft ionization and the matrix complexity. In this work, a Paternò-Büchi (PB) reaction combined with atmospheric pressure chemical ionization and ultrahigh resolution mass spectrometry (APCI-UHRMS) was developed for selective analysis of olefins. Through the PB reaction, C═C bonds were transformed into four-membered rings of oxetane with improved polarity so that soft ionization of olefins could be achieved. The systematic optimization of PB reaction conditions, as well as MS ionization conditions, ensured a high reaction yield and a satisfied MS response. Furthermore, a sound scheme was set up to discriminate the coexisting unsaturated alkanes in complex petroleum, including linear olefins, nonlinear olefins, cycloalkanes, and aromatics, making use of their different behaviors during the PB reaction and chemical ionization. The developed strategy was successfully applied to the analysis of olefins in fluid catalytic cracking oil slurry, a complex heavy oil sample. This method extended the characterization of petroleum olefins from lower to higher with high efficiency and selectivity to provide a comprehensive molecular library for heavy petroleum samples and process optimization.

16.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762338

RESUMO

The BBAA subgenomes of hexaploid common wheat can be 'extracted' to constitute a viable and self-reproducing novel tetraploid wheat, termed extracted tetraploid wheat (ETW). Prior studies have shown ETW manifesting phenotypic abnormalities and alteration in gene expression and epigenetic modifications. No population level investigation has been conducted, leaving the issue unclear regarding whether developmental stability, an essential property evolved in all natural organisms, might have been undermined in ETW. Here, we measured variations in five morphological traits and somatic chromosomal stability in populations of ETW and of its hexaploid donor, a resynthesized hexaploid and a natural tetraploid wheat. We observed phenotypic defects in ETW. Meanwhile, we documented much greater within-population variations in ETW than in the other wheat genotypes, most probably due to disrupted developmental stability in ETW. Also, somatic structural chromosome variations were detected only in ETW. Comparative transcriptome analyses indicated that the disrupted developmental stability of ETW is likely linked to massive dysregulation of genome-wide gene expression rather than to genetic mutations. Population network analysis of gene expression implicated intrinsic connectivity among the variable traits, while gene set enrichment analysis provided possible links between dysregulated gene expression and interlaced trait variation.

17.
Natl Sci Rev ; 10(9): nwac217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37576542

RESUMO

Engineering thermochemistry is the science and technology that studies, innovates, and engineers heat-induced or heat-driven thermochemical reactions and can potentially lead to reductions of five-plus billion tons of CO2 emissions effectively and economically.

18.
Toxicology ; 494: 153568, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263574

RESUMO

As an air pollutant, particulate matters 2.5 (PM2.5) poses a severe risk to kidney and the mechanism involves oxidative stress and endoplasmic reticulum (ER) stress. As an essential nutrient for human health, Vitamin B performs anti-inflammatory and antioxidant functions. In order to study the effect of Vitamin B on PM2.5-induced kidney damage during pregnancy, the pregnant mice were divided into the four experimental groups randomly: control group, model group, treatment group and VB group. PM2.5 was sprayed on the trachea of pregnant mice once each three days for six times from pregnancy until delivery. The model group was given 30 µL PM2.5 suspension of 3.456 µg/µL and 10 mL/(kg·d) PBS. The treatment group was given 30 µL PM2.5 suspension of 3.456 µg/µL and 10 mL/(kg·d) Vitamin B. The VB group was given 10 mL/(kg·d) Vitamin B and the control group was given the same dose of PBS. Vitamin B was composed of Vitamin B6, Vitamin B12 and folic acid, with final concentrations are 1.14, 0.02 and 0.06 mg/mL, respectively. The results showed Vitamin B ameliorated PM2.5-induced kidney damage such as improving histopathological change, decreasing expressions of Bip and Chop, increasing expressions of Nrf2, HO-1 and Nqo1. In addition, HK-2 cells were used for cell experiments and were divided into the four groups, in which the dosage of PM2.5 was 75 µg/mL for 24 h and Vitamin B was 5 µL/100 µL. The results showed Vitamin B ameliorated PM2.5-induced HK-2 damage, such as decreasing expressions of Bip, Chop, P47phox and ROS, increasing expressions of Nrf2, HO-1, Nqo1 and NO. Our findings showed Vitamin B ameliorated PM2.5-induced kidney damage by reducing ER stress and oxidative stress in pregnant mice and in HK-2.


Assuntos
Fator 2 Relacionado a NF-E2 , Vitaminas , Humanos , Gravidez , Feminino , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Vitaminas/metabolismo , Vitaminas/farmacologia , Estresse Oxidativo , Material Particulado/toxicidade , Rim/metabolismo , Estresse do Retículo Endoplasmático
19.
New Phytol ; 239(2): 606-623, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161722

RESUMO

Allopolyploidization may initiate rapid evolution due to heritable karyotypic changes. The types and extents of these changes, the underlying causes, and their effects on phenotype remain to be fully understood. Here, we designed experimental populations suitable to address these issues using a synthetic allotetraploid wheat. We show that extensive variation in both chromosome number (NCV) and structure (SCV) accumulated in a selfed population of a synthetic allotetraploid wheat (genome Sb Sb DD). The combination of NCVs and SCVs generated massive organismal karyotypic heterogeneity. NCVs and SCVs were intrinsically correlated and highly variable across the seven sets of homoeologous chromosomes. Both NCVs and SCVs stemmed from meiotic pairing irregularity (presumably homoeologous pairing) but were also constrained by homoeologous chromosome compensation. We further show that homoeologous meiotic pairing was positively correlated with sequence synteny at the subtelomeric regions of both chromosome arms, but not with genic nucleotide similarity per se. Both NCVs and SCVs impacted phenotypic traits but only NCVs caused significant reduction in reproductive fitness. Our results implicate factors influencing meiotic homoeologous chromosome pairing and reveal the type and extent of karyotypic variation and its immediate phenotypic manifestation in synthetic allotetraploid wheat. This has relevance for our understanding of allopolyploid evolution.


Assuntos
Cromossomos de Plantas , Triticum , Triticum/genética , Cromossomos de Plantas/genética , Poaceae/genética , Cariótipo , Cariotipagem , Pareamento Cromossômico/genética
20.
Nat Commun ; 14(1): 1908, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019898

RESUMO

Domesticated crops have been disseminated by humans over vast geographic areas. Common bean (Phaseolus vulgaris L.) was introduced in Europe after 1492. Here, by combining whole-genome profiling, metabolic fingerprinting and phenotypic characterisation, we show that the first common bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's expedition to northern Peru in 1529. We reveal that hybridisation, selection and recombination have shaped the genomic diversity of the European common bean in parallel with political constraints. There is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with 44 Andean introgressed genomic segments shared by more than 90% of European accessions and distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection highlight the role of genes relevant to flowering and environmental adaptation, suggesting that introgression has been crucial for the dissemination of this tropical crop to the temperate regions of Europe.


Assuntos
Phaseolus , Humanos , Phaseolus/genética , Variação Genética , Genótipo , Evolução Biológica , Hibridização Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...